Flowering Habitats to Enhance Biodiversity and Pest Control Services in Agricultural Landscapes
Matthias Tschumi from Agroscope Zürich and Universität Koblenz-Landau
Meeting growing demands for agricultural products requires management solutions that enhance food production, whilst minimizing negative environmental impacts. Conventional agricultural intensification jeopardizes farmland biodiversity and associated ecosystem services through excessive anthropogenic inputs and landscape simplification. Agri-environment schemes (AES) are commonly implemented to mitigate the adverse effects of conventional intensification on biodiversity. However the moderate success of such schemes thus far would strongly benefit from more explicit goals regarding ecosystem service provisioning. Providing key resources to beneficial organisms may improve their abundance, fitness, diversity and the ecosystem services they provide. With targeted habitat management, AES may synergistically enhance biodiversity and agricultural production and thus contribute to ecological intensification.
We demonstrate that sown perennial wildflower strips, as implemented in current AES focusing on biodiversity conservation also benefit biological pest control in nearby crops. Comparing winter wheat fields adjacent to wildflower strips with fields without wildflower strips we found strongly reduced cereal leaf beetle (Oulema sp.) density and plant damage near wildflower strips. In addition, winter wheat yield was 10 % higher when fields adjoined wildflower strips. This confirms previous assumptions that wildflower strips, known for positive effects on farmland biodiversity, can also enhance ecosystem services such as pest control and the positive correlation of yield with flower abundance and diversity suggests that floral resources are key.
Refining sown flower strips for enhanced service provision requires mechanistic understanding of how organisms benefit from floral resources. In climate chamber experiments investigating the impact of single and multiple flowering plant species on fitness components of three key arthropod natural enemies of aphids, we demonstrate that different natural enemies benefit differently from the offered resources. Some flower species were hereby more valuable to natural enemies than others overall. Additionally, the mixture with all flowers generally performed better than monocultures, yet with no transgressive overyielding.
By explicitly tailoring flower strips to the requirements of key natural enemies of crop pests we aimed to maximise natural enemy mediated pest control in winter wheat and potato crops. Respecting the manifold requirements of diverse natural enemies but not pests, in terms of temporal and spatial provisioning of floral, extra floral and structural resources, we designed targeted annual flower strips that can be included in crop rotation to support key arthropods at the place and time they are needed. Indeed, field experiments revealed that cereal leaf beetle density and plant damage in winter wheat can be reduced by 40 % to 60 % and aphid densities in potatoes even by 75 %, if a targeted flower strip is sown into the field. These effects were not restricted to the vicinity of flower strips and, in contrast to fields without flower strip, often prevented action thresholds from being reached. This suggests that targeted flower strips could replace insecticides. All adult natural enemies were enhanced inside targeted flower strips when compared to control strips. Yet, spillover to the field was restricted to key natural enemies such as ground beetles (winter wheat), hoverflies (potato) and lacewings (winter wheat and potato), suggesting their dominant role in biological control. In potatoes, targeted flower strips also enhanced hoverfly species richness in strips and crop, highlighting their additional benefits for diversity.
The present results provide more insights into the mechanisms underlying conservation biological control and highlight the potential of tailored habitat management for ecological intensification.